3,020 research outputs found

    Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N-2 thermometry

    Get PDF
    This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/abstract.cfm?URI=ol-34-23-3755. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.Peer reviewedPublisher PD

    Query processing of spatial objects: Complexity versus Redundancy

    Get PDF
    The management of complex spatial objects in applications, such as geography and cartography, imposes stringent new requirements on spatial database systems, in particular on efficient query processing. As shown before, the performance of spatial query processing can be improved by decomposing complex spatial objects into simple components. Up to now, only decomposition techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have been considered. In this paper, we will investigate the natural trade-off between the complexity of the components and the redundancy, i.e. the number of components, with respect to its effect on efficient query processing. In particular, we present two new decomposition methods generating a better balance between the complexity and the number of components than previously known techniques. We compare these new decomposition methods to the traditional undecomposed representation as well as to the well-known decomposition into convex polygons with respect to their performance in spatial query processing. This comparison points out that for a wide range of query selectivity the new decomposition techniques clearly outperform both the undecomposed representation and the convex decomposition method. More important than the absolute gain in performance by a factor of up to an order of magnitude is the robust performance of our new decomposition techniques over the whole range of query selectivity

    Anisotropic weakly localized transport in nitrogen-doped ultrananocrystalline diamond films

    Full text link
    We establish the dominant effect of anisotropic weak localization (WL) in three dimensions associated with a propagative Fermi surface, on the conductivity correction in heavily nitrogen doped ultrananocrystalline diamond (UNCD) films based on magneto-resistance studies at low temperatures. Also, low temperature electrical conductivity can show weakly localized transport in 3D combined with the effect of electron-electron interactions in these materials, which is remarkably different from the conductivity in 2DWL or strong localization regime. The corresponding dephasing time of electronic wavefunctions in these systems described as ~ T^-p with p < 1, follows a relatively weak temperature dependence compared to the generally expected nature for bulk dirty metals having p1p \geq 1. The temperature dependence of Hall (electron) mobility together with an enhanced electron density has been used to interpret the unusual magneto-transport features and show delocalized electronic transport in these n-type UNCD films, which can be described as low-dimensional superlattice structures.Comment: 27 pages, 6 figures, To be published in Physical Review

    Can Hall drag be observed in Coulomb coupled quantum wells in a magnetic field?

    Full text link
    We study the transresistivity \tensor\rho_{21} (or equivalently, the drag rate) of two Coulomb-coupled quantum wells in the presence of a perpendicular magnetic field, using semi-classical transport theory. Elementary arguments seem to preclude any possibility of observation of ``Hall drag'' (i.e., a non-zero off-diagonal component in \tensor\rho_{21}). We show that these arguments are specious, and in fact Hall drag can be observed at sufficiently high temperatures when the {\sl intra}layer transport time τ\tau has significant energy-dependence around the Fermi energy εF\varepsilon_F. The ratio of the Hall to longitudinal transresistivities goes as T2BsT^2 B s, where TT is the temperature, BB is the magnetic field, and s=[τ/ε](εF)s = [\partial\tau/ \partial\varepsilon] (\varepsilon_F).Comment: LaTeX, 13 pages, 2 figures (to be published in Physica Scripta, Proc. of the 17th Nordic Semiconductor Conference

    Variation bounds for spherical averages

    Get PDF
    We consider variation operators for the family of spherical means, with special emphasis on LpLqL^p\to L^q estimatesMTM2017-82160-C2-1-P RYC2018-025477-I Ikerbasqu

    Mixed quark-nucleon phase in neutron stars and nuclear symmetry energy

    Get PDF
    The influence of the nuclear symmetry energy on the formation of a mixed quark-nucleon phase in neutron star cores is studied. We use simple parametrizations of the nuclear matter equation of state, and the bag model for the quark phase. The behavior of nucleon matter isobars, which is responsible for the existence of the mixed phase, is investigated. The role of the nuclear symmetry energy changes with the value of the bag constant B. For lower values of B the properties of the mixed phase do not depend strongly on the symmetry energy. For larger B we find that a critical pressure for the first quark droplets to form is strongly dependent on the nuclear symmetry energy, but the pressure at which last nucleons disappear is independent of it.Comment: 12 pages, 16 figures, Phys. Rev. C in pres

    Implementation of the Backlund transformations for the Ablowitz-Ladik hierarchy

    Full text link
    The derivation of the Backlund transformations (BTs) is a standard problem of the theory of the integrable systems. Here, I discuss the equations describing the BTs for the Ablowitz-Ladik hierarchy (ALH), which have been already obtained by several authors. The main aim of this work is to solve these equations. This can be done in the framework of the so-called functional representation of the ALH, when an infinite number of the evolutionary equations are replaced, using the Miwa's shifts, with a few equations linking tau-functions with different arguments. It is shown that starting from these equations it is possible to obtain explicit solutions of the BT equations. In other words, the main result of this work is a presentation of the discrete BTs as a superposition of an infinite number of evolutionary flows of the hierarchy. These results are used to derive the superposition formulae for the BTs as well as pure soliton solutions.Comment: 20 page
    corecore